skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Jingsong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The yields of stabilized Criegee intermediates (sCIs), CH2OO and RCHOO (C2H5CHOO, C3H7CHOO, C4H9CHOO, and C5H11CHOO), produced from ozonolysis of asymmetrical 1-alkenes (1-butene, 1-pentene, 1-hexene, and 1-heptene) were investigated at low pressures (5-16 Torr) using cavity ring-down spectroscopy (CRDS) and chemical titration with sulfur dioxide (SO2). By extrapolating the low-pressure measurements to zero-pressure limit, nascent sCI yields were obtained. Combined with our previous studies on ethene and propene ozonolysis, the nascent sCI yields demonstrated an intriguing trend of increasing with the addition of CH2 groups and eventually reached a plateau at around 31% for longer chain 1-alkenes. In particular, the fraction of stabilized CH2OO reached the plateau from 1-butene, indicating that CH2OO was produced with nearly the same internal energy distribution from 1-butene to 1-heptene. The comparison between the experiments and RRKM calculations suggests that the dissociation of primary ozonide (POZ) of O3 + ethene and propene can be treated by statistical theory, while that of O3 + 1-butene to 1-heptene is non-statistical and intramolecular vibrational redistribution (IVR) of the initial energy on the 1,2,3-trioxolane of POZ throughout the entire molecule was incomplete on the dissociation time scale. 
    more » « less
  2. Thermal decomposition and isomerization of 1-butyl and 1-pentyl radical were studied in the temperature range of 500–1480 K on a short time scale of 20–100 µs using flash pyrolysis vacuum ultraviolet single-photon ionization time-of-flight mass spectrometry. 1-Bromobutane and 1-bromopentane were used as precursors for the 1-butyl and 1-pentyl radical, respectively. The reactive intermediates in the thermal dissociation reactions were directly observed. The 1-butyl radical decomposed to ethene and ethyl radical with ethyl radical rapidly losing an H atom to form a second ethene molecule. Loss of H atom from butyl radical was also a significant decomposition channel. Isomerization of 1-butyl via 1,3-H migration was observed as a minor channel at 1380 K and above with a branching ratio of less than 3% at 1430 K. The 1-pentyl radical was observed to decompose mainly by isomerization to 2-pentyl radical followed by β-scission to produce propene and ethyl radicals at temperatures approximately 900 K and below. Above 900 K, β-scission of 1-pentyl to produce ethene and 1-propyl radical became increasingly important. Isomerization to 3-pentyl was verified to be a minor channel. 
    more » « less
  3. Free, publicly-accessible full text available January 10, 2026
  4. The ultraviolet (UV) photodissociation dynamics of the 1-methylallyl (1-MA) radical were studied using the high-n Rydberg atom time-of-flight (HRTOF) technique in the wavelength region of 226–244 nm. The 1-MA radicals were produced by 193 nm photodissociation of the 3-chloro-1-butene and 1-chloro-2-butene precursor. The 1 + 1 REMPI spectrum of 1-MA agrees with the previous UV absorption spectrum in this wavelength region. Quantum chemistry calculations show that the UV absorption is mainly attributed to the 3pz Rydberg state (perpendicular to the allyl plane). The H atom photofragment yield (PFY) spectrum of 1-MA from 3-chloro-1-butene displays a broad peak around 230 nm, while that from 1-chloro-2-butene peaks at ∼236 nm. The translational energy distributions of the H atom loss product channel, P (ET)’s, show a bimodal distribution indicating two dissociation pathways in 1-MA. The major pathway is isotropic in product angular distribution with β ∼ 0 and has a low fraction of average translational energy in the total excess energy, ⟨fT⟩, in the range of 0.13–0.17; this pathway corresponds to unimolecular dissociation of 1-MA after internal conversion to form 1,3-butadiene + H. The minor pathway is anisotropic with β ∼ −0.23 and has a large ⟨fT⟩ of ∼0.62–0.72. This fast pathway suggests a direct dissociation of the methyl H atom on a repulsive excited state surface or the repulsive part of the ground state surface to form 1,3-butadiene + H. The fast/slow pathway branching ratio is in the range of 0.03–0.08. 
    more » « less
  5. Ultraviolet photodissociation dynamics of 2-methylallyl radical from the 3p Rydberg state were investigated in the wavelength region of 226–244 nm using the high-n Rydberg atom time-of-flight (HRTOF) technique. The 2-methylallyl radicals were generated by 193 nm photolysis of 3-chloro-2-methyl-1-propene precursors. The photofragment yield spectrum of H-atom products increases in intensity with decreasing wavelengths in 226–244 nm. The TOF spectra of H-atom products show a bimodal structure. The predominant product channel (with ∼98% branching ratio) has a kinetic energy release peaking at ∼7 kcal/mol, with an average ratio of ET in the total available energy, (fT), of ∼0.18 in 226–244 nm and an isotropic product angular distribution. At the low ET, isotropic component is from statistical unimolecular decomposition of highly vibrationally excited hot 2-methylallyl to the methylenecyclopropane+H products, following internal conversion from the excited electronic state. The minor product channel (with ∼2% branching ratio) has a large kinetic energy peaking at ∼50 kcal/mol, with (fT)≈0.63 and an anisotropic angular distribution (β≈−0.2). At the high ET, anisotropic component is non-statistical and is postulated to be from direct loss of H atom via the 3p Rydberg state or repulsive part of the ground state to the 1,3-butadiene+H products. 
    more » « less
  6. he thermal decomposition mechanism of hydroxyacetone from 850 to 1390 K was examined by using flash pyrolysis vacuum ultraviolet photoionization time-of-flight mass spectrometry combined with density functional theory calculation. The results showed that keto–enol tautomerisms could occur prior to the thermal decomposition of hydroxyacetone. The decomposition pathways of hydroxyacetone and its isomer, 2-hydroxypropanal were characterized. The thermal decomposition reactions started at about 950 K. The homolysis reactions related to the cleavage of the CCO–CCOH bond of hydroxyacetone and 2-hydroxypropanal, as well as CH3 loss of hydroxyacetone, dominated the initial decomposition reactions. The subsequent decompositions of the radical intermediates generated by the initial homolysis decompositions were the major secondary decomposition reactions. The formation pathways of small molecules, such as H2, CH4, H2O, and HCHO, were proposed to proceed via molecular elimination reactions facilitated by the active α-H atoms. These elimination reactions were not negligible at high temperatures above 1230 K. 
    more » « less
  7. The yields of stabilized Criegee intermediates (sCIs), both CH2OO and CH3CHOO, produced from ozonolysis of propene at low pressures (7-16 Torr) were measured indirectly using cavity ringdown spectroscopy (CRDS) and chemical titration with an excess amount of sulfur dioxide (SO2). The method of monitoring the consumption of SO2 as a scavenger and the production of secondary formaldehyde (HCHO) allows characterization of the total sCI and the stabilized CH2OO yields at low pressure and in short residence time. Both the total sCI and the stabilized CH2OO yields in the propene ozonolysis were found to decrease with decreasing pressure. By extrapolating the 7-16 Torr measurements to zero-pressure limit, the nascent yield of the total sCIs was determined to be 25 ± 2%. The ranges of nascent yields of stabilized CH2OO and stabilized CH3CHOO were estimated to be 20-25% and 0-5%, respectively. The branching ratios of the stabilized and high-energy CH2OO* and CH3CHOO* were also determined. 
    more » « less
  8. Photo-predissociation of rovibrational levels of SH (A2Σ+, v′ = 0–6) is studied using the high-n Rydberg atom time-of-flight technique. Spin–orbit branching fractions of the S(3PJ=2,1,0) products are measured in the product translational energy distributions. The SH A2Σ+v′ = 0 state predissociates predominantly via coupling to the 4Σ− repulsive state. As the vibrational level v′ increases, predissociation dynamics change drastically, with all three repulsive states (4Σ−, 2Σ−, and 4Π) involved in the dissociation. Nonadiabatic interactions and quantum interferences among these dissociation pathways affect the fine-structure state distributions of the S(3PJ=2,1,0) products. 
    more » « less
  9. The photodissociation dynamics of jet-cooled ethyl radical (C2H5) via the Ã2A′(3s) states are studied in the wavelength region of 230–260 nm using the high-n Rydberg H-atom time-of-flight (TOF) technique. The H + C2H4 product channels are reexamined using the H-atom TOF spectra and photofragment translational spectroscopy. A prompt H + C2H4(X̃1Ag) product channel is characterized by a repulsive translational energy release, anisotropic product angular distribution, and partially resolved vibrational state distribution of the C2H4(X̃1Ag) product. This fast dissociation is initiated from the 3s Rydberg state and proceeds via a H-bridged configuration directly to the H + C2H4(X̃1Ag) products. A statistical-like H + C2H4(X̃1Ag) product channel via unimolecular dissociation of the hot electronic ground-state ethyl (X̃2A′) after internal conversion from the 3s Rydberg state is also examined, showing a modest translational energy release and isotropic angular distribution. An adiabatic H + excited triplet C2H4(ã3B1u) product channel (a minor channel) is identified by energy-dependent product angular distribution, showing a small translational energy release, anisotropic angular distribution, and significant internal excitation in the C2H4(ã3B1u) product. The dissociation times of the different product channels are evaluated using energy-dependent product angular distribution and pump–probe delay measurements. The prompt H + C2H4(X̃1Ag) product channel has a dissociation time scale of <10 ps, and the upper bound of the dissociation time scale of the statistical-like H + C2H4(X̃1Ag) product channel is 5 ns. 
    more » « less